FEATURES:
The KT34M2 is now the best performing and strongest short tribander available today. All four elements resonant on each band. A dual driven element allows a beautiful flat match, broad gain, and high front to back curves across 10, 15, and 20M. A 3kW 4:1 balun efficiently matches the antenna to 50Ω. All sheet metal parts have been upgraded to our new machined shorting bars, stiffening and strengthening the antenna noticeably. The long term performance is enhanced by the total contact machined joints. This antenna will be competitive with most monobanders! Be surprised, get the NEW KT34M2.

SPECIFICATIONS:

Model ... KT34M2
Frequency Range 14.0-14.350 MHz
Frequency Range 21.0-21.450 MHz
Frequency Range 28.0-29.0 MHz
*Gain in free space See Chart
Front to back See Chart
Feed type “T” Match
Feed Impedance 50 Ohms Unbalanced
Maximum VSWR 1.5:1

10m
\begin{tabular}{|c|c|c|c|}
\hline
f, MHz & G, dBi & F/B, dB \\
\hline
28.0 & 7.3 & 18 \\
28.2 & 7.3 & 23 \\
28.4 & 7.4 & 25 \\
28.6 & 7.5 & 24 \\
29.2 & 7.6 & 20 \\
\hline
\end{tabular}

15m
\begin{tabular}{|c|c|c|c|}
\hline
f, MHz & G, dBi & F/B, dB \\
\hline
21.0 & 6.9 & 19 \\
21.1 & 6.9 & 22 \\
21.2 & 7.0 & 24 \\
21.3 & 7.0 & 24 \\
21.45 & 7.1 & 23 \\
\hline
\end{tabular}

20m
\begin{tabular}{|c|c|c|c|}
\hline
f, MHz & G, dBi & F/B, dB \\
\hline
14.0 & 6.5 & 17 \\
14.1 & 6.6 & 24 \\
14.2 & 6.7 & 21 \\
14.35 & 6.8 & 23 \\
\hline
\end{tabular}

*Subtract 2.14 from dBi for dBd
Tools: Phillips head screw driver, ‘green’, 11/32” nut driver, 7/16” wrench, 7/16” socket, socket wrench, tape measure, and a friend.

NOTE: To prevent galling of the stainless steel hardware, apply a light coating of Penetrox to all bolts and screws. The term ‘SWAGE’ refers to a physical reduction made in one diameter of tubing in order to fit into or over another.

1. SHORTING BARS

Included with this kit are five different shorting bars, pictured in Figure 1. First locate the 10m shorting bars and shorting bar insulators (black or white). For each 10m shorting bar press a single shorting bar insulator into the large hole. This can be done initially with a vise or with a hammer and a block of wood. After the insulator has been partially set into the hole, take two element clamp plates and center the shorting bar on top of the two plates. Now place the block of wood on top of the insulator and give a final strike. You should hear a snap. This is the indication that the insulator has been secured. Next install the 8-32 hardware listed to the right of each part into each respective shorting bar. Remember to apply a light coating of Penetrox to the threads of each screw. Finger tighten each locknut for now. Locate the small container of Penetrox and for each shorting bar, apply a light coating to the walls as indicated in the figure.

2. CAPACITOR TUBE ASSEMBLY

There are three sizes of capacitor tubes. Tube sizes 8”, 9” and 10” are for the 10m capacitor while the 16” pieces are for 15m. NOTE: THESE CAPACITOR TUBE SHOULD BE VERY CLEAN INSIDE. PUSH KLEENEX OR EQUIVALENT THROUGH AS REQUIRED TO REMOVE CHIPS, OIL ETC. Locate the bag of capacitor caps. As shown in Figure 2, starting with the 8” tube, slide on the long 10M shorting bar about an inch. Then lay a capacitor cap on a flat surface and with your own weight/strength, press on a cap. Turn the tube over, and install another cap. Each capacitor cap will engage the 3/4” tube 3/8’(375) so a measurement can be taken to insure complete engagement of the caps to the tube, simply measure between the inside edge of the two installed caps, it should be 5/8’(625) to 3/4”(.750) shorter than the capacitor tube being measured. Repeat this procedure for the 9” and 10” capacitor tubes. For the 16” tubes follow the same procedure but slide on a different shorting bar as shown in the figure.

Figure 1

KT34M2 CAP ASSEMBLY

Figure 2
3. CAPACITOR ASSEMBLIES ONTO LONGER 3/8” TUBES
Locate the (8) longer 3/8” diameter tubes. Upon inspecting the tubes, you’ll notice there are two holes drilled on one side only. These holes equalize the atmospheric pressure in the capacitors and prevent moisture build up inside the capacitor tubes. Denote the hole side of the tube by making a identifying mark NEAR the tube end, with a pen or marker. Following the information in Table 1, make another mark on the hole side of the tube indicating the location of where to initially center the two capacitor tubes (about 1/4” apart) As shown in Figure 3 below, make this measurement from the side that has the shorter distance from hole to tube end. Now pair up the capacitor assemblies with the correct 3/8” tube sizes using the first three columns of Table 1.

TABLE 1

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>10m CAPACITOR TUBE</th>
<th>15m CAPACITOR TUBE</th>
<th>3/8” DIA. TUBE</th>
<th>CENTER CAPACITOR TUBES ON 3/8” DIA TUBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFLECTOR</td>
<td>10”</td>
<td>16”</td>
<td>80”</td>
<td>29”</td>
</tr>
<tr>
<td>REAR DRIVEN</td>
<td>9”</td>
<td>16”</td>
<td>80”</td>
<td>28”</td>
</tr>
<tr>
<td>FRONT DRIVEN</td>
<td>8”</td>
<td>16”</td>
<td>74”</td>
<td>28”</td>
</tr>
<tr>
<td>1ST DIRECTOR</td>
<td>8”</td>
<td>16”</td>
<td>72”</td>
<td>26-1/2”</td>
</tr>
</tbody>
</table>

For each set of capacitor tube assemblies and 3/8” tubes, insert the 3/8” tube as shown in Figure 3 into the back end of the 15m capacitor assembly. Move the capacitor up the length of the tube until the face of the black capacitor cap ON THE SHORTING BAR SIDE of the capacitor assembly is within 1/4” from the mark you made. Now slide on the 10m capacitor tube assembly up the length of the tube in the same fashion, making sure that the face of the capacitor cap is at the mark. There should now be about 1/4” separation distance between the two capacitor assemblies. If the caps are tight together moisture can stay there a long time increasing the chance for water to migrate inside the capacitor. This is bad as water in any capacitor will cause VSWR problems.
4. GENERAL ASSEMBLY OF HALF ELEMENT SECTIONS

We recommend assembling the half element sections on a clean, flat surface. There is an “DIMENSION/ ASSEMBLY” drawing for each of the four elements with both the right and left halves shown on each page. We also recommend briefing yourself with the general directions before skipping to the assembly drawings.

The general assembly procedure for a half element section begins with laying each capacitor assembly on a level surface, with the 10m capacitor tube on the left hand side. Locate the two swaged 3/4” diameter tubes and the 5/8 x 6” fiberglass rod. **NOTE: BE SURE TO USE THE CORRECT LENGTH 3/4” SECTIONS MATCHING UP WITH THE 10M CAPACITOR LENGTH.** Insert the fiberglass rod into the LIGHTLY swaged end side of the longer 3/4” section. Align the two holes and secure loosely with a single 8-32 x 1” screw and locknut in the outer hole as shown in Figure 4. Next slide the other end of the fiberglass rod into the center hole of the 10M shorting bar connected to the 10m capacitor. Now slide the lightly swaged end of the shorter 3/4” x 12” tubing through the hole of the shorting bar connected to the 15m capacitor tube. Secure with a single 8-32 x 1” screw and locknut, again through the “OUTER HOLE” in the figure. Next insert the inner two 8-32 x 1” screws and locknuts, and tighten LIGHTLY. **NOTE: IF YOU OVER TIGHTEN, YOU MAY NOT BE ABLE TO MOVE THE SHORTING BARS TO THE FINAL POSITION.**

Slide the two shorting bars right up against the two inner locknuts as shown. Now tighten all four inner and outer screws and locknuts. Position the capacitor tube assembly so that the gap rests in between the two shorting bars and **MAKE SURE THE MARKS YOU MADE ON THE 3/8” TUBE ARE UP.** Tighten all of the 8-32 hardware installed to this point.

Locate the appropriate 1/2’ element tip section and insert the end with two holes into the 3/4 x 12” swaged end. Secure the 1/2” tip with two 8-32 x 1” screws and locknuts. With a tape measure hooked to the inner edge of the 15m capacitor tube shorting bar, mark the dimension called out for the 15m shorting bar. Slide the 15m shorting bar onto the 3/8 and 1/2” tube and set the inner edge if the bar to the mark. Install two 8-32 x 1” screws, add locknuts, align with the other two bars, and tighten.

Locate the 10m shorting bar and the shorter 3/8” tube. Using a tape measure connected to the inner edge of the 10m capacitor tube shorting bar, mark the dimension called out for the 10m shorting bar. Slide on the 10m shorting bar, set the inner edge to the mark and tighten the top 8-32 screw. Now insert the shorter 3/8” tube through the other hole on the 10m shorting bar and into the free hole on the 10m capacitor tube shorting bar. Allow the tube to extend 1” past the shorting bar connected to the 10m capacitor and tighten the 8-32 hardware on both of the shorting bars.

Using the general directions above and the four TIP DIMENSION assembly drawings, proceed in fabricating the 8 half element sections. After double checking your dimensions and making sure that your elements are labeled correctly proceed to the next step.
ASSEMBLE ON A FLAT SURFACE
MAKE SURE THE SMALL "VENT"
HOLES IN THE LONG 3/8" TUBES
ARE UP BY MARKING THE TUBE
OUTSIDE THE CAPACITORS.
* USE PENETROX OR OIL ON ALL
STAINLESS SCREWS AND BOLTS.

VENT HOLES IN THE LONG
3/8" TUBES MUST BE UP AND
INSIDE THE CAPACITOR TUBES.

DECIMAL TO
FRACTION
CONVERSION
062 = 1/16"
.125 = 1/8"
.188 = 3/16"
.250 = 1/4"
.313 = 5/16"
.375 = 3/8"
.437 = 7/16"
.50 = 1/2"
.562 = 9/16"
.625 = 5/8"
.688 = 11/16"
.75 = 3/4"
.813 = 13/16"
.875 = 7/8"
093 = 15/16"
1.0 = 1"

HOOキ TAPE MEASURE HERE WHEN
SETTING 10M DIMENSIONS.

HOOキ TAPE MEASURE HERE WHEN
SETTING 15M AND 20M DIMENSIONS.

SCREW LENGTH
WHERE NOT CALLED OUT:
A = B-32 X 1"
B = B-32 X 1-1/4"

10m CAPACITOR
3/4" x 10"

15m CAPACITOR
3/4" x 18"

3/8" x 80" TUBE

15m
46.75"

1/2" x 51.75"

20m
60.125"

3/4 x 12" SBE

18" OF TUBE IS EXPOSED

RIGHT SIDE

FORWARD

3/4" x 21"

10m
27.25"

LEFT SIDE

V рん HOLE MUST BE UP
ON LONGER 3/8" TUBE

FORWARD

3/4" x 21"

10m
27.25"

15m CAPACITOR
3/4" x 18"

3/8" x 80" TUBE

15m
46.75"

3/4 x 12" SBE
KT34M2 REAR DRIVEN TIP DIMENSIONS

TOP VIEW

*ASSEMBLE ON A FLAT SURFACE
*MAKE SURE THE SMALL "VENT"
HOLES IN THE LONG 3/8" TUBES
ARE UP BY MARKING THE TUBE
OUTSIDE THE CAPACITORS.
*USE PENETROX OR OIL ON ALL
STAINLESS SCREWS AND BOLTS.

VENT HOLES IN THE LONG
3/8" TUBES MUST BE UP AND
INSIDE THE CAPACITOR TUBES.

FORWARD

LEFT SIDE

HOOK TAPE MEASURE HERE WHEN
SETTING 10M DIMENSIONS.

RIGHT SIDE

VENT HOLES MUST BE UP
ON LONGER 3/8" TUBE

FORWARD

DECIMAL TO PRACTICAL
CONVERSION
0.02 = 1/16"
0.125 = 1/8"
0.1875 = 3/16"
0.25 = 1/4"
0.3125 = 5/16"
0.375 = 3/8"
0.4375 = 7/16"
0.5 = 1/2"
0.625 = 5/8"
0.6875 = 11/16"
0.75 = 3/4"
0.875 = 7/8"
0.9375 = 15/16"
1.0 = 1"

SCREW LENGTH
WHERE NOT CALLED OUT:
A = 8-32 X 1"
B = 8-32 X 1-1/4"

HOOK TAPE MEASURE HERE WHEN
SETTING 15M AND 20M DIMENSION
KT34M2 FRONT DRIVEN TIP DIMENSIONS

TOP VIEW

- **10m CAPACITOR 3/4" x 8"**
- **15m CAPACITOR 3/4" x 16"**
- **3/8" x 74" TUBE**
- **3/4 X 12" SBE**
- **18" OF TUBE IS EXPOSED**
- **20m 1/2" x 36.25"**
- **20m 44.625"**
- **10m TUBE**

RIGHT SIDE

- **HOOK TAPE MEASURE HERE WHEN SETTING 10M DIMENSIONS.**

LEFT SIDE

- **HOOK TAPE MEASURE HERE WHEN SETTING 15M AND 20M DIMENSIONS.**

- **VENT HOLES MUST BE UP ON LONGER 3/8" TUBE**

DECIMAL TO FRACTION CONVERSION

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>1/50</td>
</tr>
<tr>
<td>0.05</td>
<td>1/20</td>
</tr>
<tr>
<td>0.1</td>
<td>1/10</td>
</tr>
<tr>
<td>0.125</td>
<td>1/8</td>
</tr>
<tr>
<td>0.2</td>
<td>1/5</td>
</tr>
<tr>
<td>0.25</td>
<td>1/4</td>
</tr>
<tr>
<td>0.3</td>
<td>3/10</td>
</tr>
<tr>
<td>0.3125</td>
<td>5/16</td>
</tr>
<tr>
<td>0.35</td>
<td>7/20</td>
</tr>
<tr>
<td>0.4</td>
<td>2/5</td>
</tr>
<tr>
<td>0.4167</td>
<td>5/12</td>
</tr>
<tr>
<td>0.5</td>
<td>1/2</td>
</tr>
<tr>
<td>0.5833</td>
<td>5/8</td>
</tr>
<tr>
<td>0.6667</td>
<td>2/3</td>
</tr>
<tr>
<td>0.75</td>
<td>3/4</td>
</tr>
<tr>
<td>0.8125</td>
<td>17/20</td>
</tr>
<tr>
<td>0.875</td>
<td>7/8</td>
</tr>
<tr>
<td>0.9167</td>
<td>11/12</td>
</tr>
<tr>
<td>1.0</td>
<td>1</td>
</tr>
</tbody>
</table>

SCREW LENGTH

WHERE NOT CALLED OUT:

- **A = 8-32 x 1"**
- **B = 8-32 x 1-1/4"**
KT34M2 1ST DIRECTOR TIP DIMENSIONS

TOP VIEW

VENT HOLES IN THE LONG 3/8" TUBES MUST BE UP AND INSIDE THE CAPACITOR TUBES.

FORWARD

10m CAPACITOR 3/4" X 8"

15m CAPACITOR 3/4 X 16"

3/8" X 72" TUBE

LEFT SIDE

20" OF TUBE IS EXPOSED

10m TUBE IS EXPOSED

15m 42.5"

3/4" X 12.0" SBE

20m 50.625"

1/2" X 42.25"

DECAIMAL TO FRACTION
CONVERSION

0.5 = 1/2
0.25 = 1/4
0.125 = 1/8
0.375 = 3/8
0.625 = 5/8
0.875 = 7/8
1.0 = 1

RIGHT SIDE

23.75"

10m

50.625"

20m

1/2" X 42.625"

VENT HOLES MUST BE UP ON LONGER 3/8" TUBE

10m CAPACITOR 3/4" X 8"

15m CAPACITOR 3/4 X 16"

3/8" X 72" TUBE

TOP VIEW

HOOK TAPE MEASURE HERE WHEN SETTING 10M DIMENSIONS.

SCREW LENGTH WHERE NOT CALLED OUT:

A = 8-32 X 1"
B = 8-32 X 1-1/4"

HOOK TAPE MEASURE HERE WHEN SETTING 15M AND 20M DIMENSIONS.

ALLOW TO STICK OUT ABOUT 1/2"

3/4" X 23"
5. HF CLAMP PLATE PAIR ASSEMBLY
Locate the 8 element clamp plates, the Balun ‘L’-Bracket, 2-1/2” U-bolt & Saddle, and element clamp cap. Assemble the plates into four pairs with the radii facing each other using four 1/4-20 x 2” bolts. On one of the ‘alike’-pair combinations, attach the Balun ‘L’-Bracket to the outside clamp plate with the flat side up and higher than the plates. Install the 2-1/2” U-bolt & Saddle combination on the top side of the ‘L’-Bracket and add the 5/16” nuts and lockwashers. This assembly will be used for the FRONT DRIVEN ELEMENT. Finger tighten all the hardware.

6. FRONT AND REAR DRIVEN ELEMENT ASSEMBLY
Take the element clamp plate pair assembly for the FRONT DRIVEN ELEMENT (previous step) and one of the ‘alike’ element clamp pairs, and for both insert a 7/8 x 14-3/4” fiberglass rod through the plates. Orient the four holes up and make sure the rod is centered. Tighten the four bolts evenly on the clamp plates. Locate the four 7/8” poly disc insulators. Slide a poly disc onto both ends of each 7/8” fiberglass rod and position them right up against the element clamp plates. They are supposed to be tight so if the discs won’t fit onto the rod, try soaking them in HOT water for a few minutes. Locate four of the 1 x 72” SOE (swaged one end) tubes. Select two to be used for the FRONT DRIVEN ELEMENT. Locate the two ‘T’-match shorting bars and slide one about 2 feet onto each of the straight ends of the 1” tubes you have selected. The other pair of 1 x 72” SOE tubes will be for the REAR DRIVEN ELEMENT. For all four 1” tubes, slide the straight ends on both sides of the two fiberglass rods. Align the holes, insert two 1/4-20 x 2” bolts up through the bottom, and temporarily lay the two assemblies flat. Locate the eight 3/8” clamp blocks. Spread a little Penetrox on each clamp block face. Slide two clamp blocks with their faces towards one another onto the 1/4-20 bolt posts on each element assembly and thread on the 1/4-20 locknuts. Do not tighten the locknuts at this time.

7. REFLECTOR, AND DIRECTOR #1 INNER SECTION ASSEMBLY
Locate the remaining four 1 x 72” SOE (swaged one end) tube sections and the two 7/8 x 36” aluminum center sleeves. With the two remaining pairs of element clamp plates, insert a 7/8” center sleeve and slide onto both sides of the sleeve, a 1 x 72” tube section. Align the two holes and secure with 1/4-20 x 1-1/2” bolts and locknuts. Orient the tubes so that the locknuts are down and centered. Tighten the 1/4-20 hardware evenly. A gap between the two tube sections is normal.

8. BOOM ASSEMBLY
Prior to assembling the boom, inspect each mating surface and holes for any metal chips or burrs. Apply a light coating of PENETROX to the swaged ends of each piece. Using the DIMENSION SHEET as a guide, lay out the three 3” pieces as shown. Note that the single straight section is the FRONT end of the antenna. Now assemble the boom and secure the pieces together with 1/4-20 x 3-1/2” bolts and locknuts. Tighten until no movement is felt at each joint.

9. ELEMENT INSTALLATION
We advise that you elevate the antenna boom onto a couple of sawhorses or bucks for the remaining assembly steps. Use the DIMENSION SHEET as a guide to properly install the elements onto the boom. If you have not labeled which side of the element faces towards the front of the antenna, you will want to pay close attention to the DIMENSION SHEET. In fact, you might want to label them now. You also might want to have a friend handy to keep the antenna from moving on you.
Place the REFLECTOR ELEMENT onto the boom in the orientation shown on the DIMENSION SHEET. Set the outside edge of the element clamp plate 2-1/2” from the rear of the boom. Locate two 3” saddles, apply zinc paste or grease to the threads and insert two 1/4-20 x 3” bolts through each of the holes. Next attach the two saddles to the underside of the element clamp plates, and tightly tighten the entire assembly, so the element won’t move. Using a tape measure hooked to the outside edge of the clamp plate facing the rear, mark off the
location for the outside edge of the element clamp on the REAR DRIVEN ELEMENT assembly with a marking pen or pencil. Install the REAR DRIVEN ELEMENT as you did for the REFLECTOR Make sure you follow the element placement on the DIMENSION SHEET. Continue installing the rest of the elements in the same fashion. After all of the elements have been installed take a couple of steps back and look down from the end of the antenna. Check to see if the elements are lined up with one another. If any need to be fixed, simply loosen the saddles, straighten, and re-tighten.

10. INSTALLATION OF PHASING LINES (see figure 7)
Locate the two 3/8" tube phasing lines, the phasing line insulator, and one cable tie. Insert both tubes into the two holes on the insulator. Temporarily loosen the 1/4-20 locknuts located on the FRONT and REAR DRIVEN
ELEMENTS and slide each phasing line into one pair 3/8” clamp blocks. Allow the ends of the phasing lines to TEMPORARILY stick out 4” past the ends of the clamp blocks. Now pull the phasing lines back, guiding them into the clamp block set on the other driven element. Now re-tighten the four 1/4-20 locknuts. Set the insulator about midway between the two elements and secure it with large nylon tie inserted through the bottom hole and around the boom. TIP: (For maximum life of the cable tie, cover the tie with 2 to 3 wraps of Scotch 33 or equivalent black electricians tape).

11. BALUN INSTALLATION
Refer to the figures 6 and 7 on DUAL DRIVEN AND T-MATCH ASSEMBLY for this procedure.
Loosen the 2-1/2” U-bolt on the L-bracket and insert the 4:1 HF Balun with the connector facing towards the front of the antenna. MOUNT WITH THE DRAIN HOLE DOWN. Position the Balun so that the U-bolt hits the edge of the front cap. Now tighten the U-bolt just enough to hold firmly in place. BE CAREFUL! Over tightening might crack the case of the Balun. Remove the wire balun leads shipped with the balun and install the “L” shaped straps on each of the balun mounting posts. (shorter side).

12. ‘T’-MATCH INSTALLATION
Refer to figure 6 on DUAL DRIVEN AND T-MATCH ASSEMBLY for this procedure.
Locate the two 1/2 x 23-1/2” ‘T’-Feed tubes and 3/8 x 10” fiberglass insulator. Install the 3/8” fiberglass insulator into one of the 1/2” ‘T’-feed tubes. Align the holes and temporarily secure with a 8-32 x 1” screw. Now feed the undrilled ends of both ‘T’-feed tubes into the two ‘T-match shorting bars. Slide one of them back so you can install the other end of the 3/8” fiberglass rod into the other 1/2” tube. Align the holes and secure with another 8-32 x 1” screw. With all of the hardware loose, rotate the entire ‘T-Match assembly up so that the two 8-32 screws fit right into the two Balun straps. Secure the two 8-32 screws with two 8-32 locknuts. Now set the two shorting bars to the dimensions shown on the DIMENSION SHEET and tighten all the hardware.

13. Now it is time to install the completed tip sections. Refer to the main overview of the antenna called the “KT34M2 DIMENSIONS SHEET”. Paying close attention to the DIMENSION SHEET, and the ORIENTATION of the CAPACITORS, insert the individual element halves for the REFLECTOR into the swaged ends of the 1 x 72” tubes. Secure them with 8-32 x 1-1/4” screws and locknuts and tighten securely.

14. Now move on to the REAR DRIVEN ELEMENT TIPS AND BE CAREFUL! This element is not installed in the same orientation as the REFLECTOR. Add the hardware and tighten as before.

15. Continue by adding the FRONT DRIVEN ELEMENT TIPS and then the DIRECTOR TIPS. Secure them with 8-32 x 1-1/4” screws and locknuts as before and tighten all hardware.

16. BOOM TO MAST PLATE INSTALLATION
Locate the boom to mast plate, 3” U-bolts & saddles, and 2” U-bolts & saddles. Install the four 2” U-bolts on one side of the boom to mast plate. Center the plate at the location shown on the DIMENSION SHEET, and install it using the 3” U-bolts, saddles, 3/8” nuts, and lockwashers. If possible, attach the feedline to the balun and route it back near the boom to mast plate and secure. Seal the connector with black tape, coax seal or equivalent. A 3” U-bolt pattern exists should you need to mount the antenna to a 3” mast.

This completes the ASSEMBLY. REMEMBER to support the feedline at the antenna boom and on the mast. Leave an adequate feedline loop for rotation around the tower.

REMEMBER YOU CANNOT STACK A TRIBAND BEAM WITH ANOTHER ANTENNA WORKING ON THE SAME BAND AS THE TRIBANDER. Serious interaction will result and loss of performance of both antennas maybe noted. Two KT34M2 tribanders can be stacked together but the spacing must be at least 32 feet apart. When stacking this antenna with other H.F. models like 17 and 12 meters, maintain at least 8’ separation; more if practical. Mount horizontally polarized 2M VHF and UHF antennas at least 40” above or below this antenna to minimize interaction. We have noticed that large 2 wavelength (40 foot) long 6M Yagis even stacked at 10 feet above will interact and can cause some loss of front to back on the tribander.

Carefully designed and manufactured by:

M² Antenna Systems Inc.
4402 N. Selland Ave.
Fresno, CA 93722
(559) 432-8873 FAX: 432-3059 www.m2inc.com Email: sales@m2inc.com
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom section, 3" x .065 x 95" SOE, holes in swage</td>
<td>1</td>
</tr>
<tr>
<td>Boom section, 3" x .065 x 95" SOE, holes both end</td>
<td>1</td>
</tr>
<tr>
<td>Boom section, 3" x .065 x 12"</td>
<td></td>
</tr>
<tr>
<td>Element, 1" x 72 SOE</td>
<td>8</td>
</tr>
<tr>
<td>Sleeve, center, 7/8 x .058 x 36"</td>
<td>2</td>
</tr>
<tr>
<td>Element, 3/4 x .049 x 24", SOE to fit 5/8 fiberglass</td>
<td>2</td>
</tr>
<tr>
<td>Element, 3/4 x .049 x 23", SOE to fit 5/8 fiberglass</td>
<td>2</td>
</tr>
<tr>
<td>Element, 3/4 x .049 x 21", SOE to fit 5/8 fiberglass</td>
<td>4</td>
</tr>
<tr>
<td>Element, 3/4 x .049 x 12 SBE to fit 5/8 fg and 1/2" tube</td>
<td>8</td>
</tr>
<tr>
<td>Capacitor tube, 3/4 x .049 x 16"</td>
<td></td>
</tr>
<tr>
<td>Capacitor tube, 3/4 x .049 x 10"</td>
<td>2</td>
</tr>
<tr>
<td>Capacitor tube, 3/4 x .049 x 9"</td>
<td>2</td>
</tr>
<tr>
<td>Capacitor tube, 3/4 x .049 x 8"</td>
<td>4</td>
</tr>
<tr>
<td>Element, 1/2 x .049 x 51-3/4"</td>
<td>2</td>
</tr>
<tr>
<td>Element, 1/2 x .049 x 46-1/4"</td>
<td>2</td>
</tr>
<tr>
<td>Element, 1/2 x .049 x 42-1/4"</td>
<td>2</td>
</tr>
<tr>
<td>Element, 1/2 x .049 x 36-1/4"</td>
<td>2</td>
</tr>
<tr>
<td>T Match tubes, 1/2 x .049 x 23-1/2"</td>
<td>2</td>
</tr>
<tr>
<td>Linear loading tube, 3/8 x .049 x 80"</td>
<td>4</td>
</tr>
<tr>
<td>Linear loading tube, 3/8 x .049 x 74"</td>
<td>2</td>
</tr>
<tr>
<td>Linear loading tube, 3/8 x .049 x 72"</td>
<td>2</td>
</tr>
<tr>
<td>Phasing line tube, 3/8 x .049 x 57"</td>
<td>2</td>
</tr>
<tr>
<td>Linear loading tube, 3/8 x .049 x 30"</td>
<td>8</td>
</tr>
<tr>
<td>Fiberglass rod, 7/8 x 14-3/4"</td>
<td>2</td>
</tr>
<tr>
<td>Boom to mast plate, 1/4 x 6 x 8 alum.</td>
<td>1</td>
</tr>
<tr>
<td>Balun, HF 4:1 standard 3 kW</td>
<td>1</td>
</tr>
<tr>
<td>Cable ties, large</td>
<td>3</td>
</tr>
<tr>
<td>Penetrox cup</td>
<td>1</td>
</tr>
<tr>
<td>Assembly manual</td>
<td>1</td>
</tr>
</tbody>
</table>

IN BAG #1

Fiberglass rod, 5/8 x 6" .. 8

IN BAG #2 / 3

U-bolt and saddle, 3" .. 2
U-bolt and saddle, 2-1/2" .. 1
U-bolt and saddle, 2" .. 2

IN BAG #4

Element clamp plates, 3/8 x 2-1/2 x 4" 8

IN BAG #5

Saddle clamp, 1/2 x 1" x 4", to fit 3" tube 8
IN BAG #6 (MISCELLANEOUS)
Clamp Block, 3/8” ... 8
Phasing Line Insulator black delrin, 3/4 x 3” 1
Balun ‘L’-Bracket, 1” x 1” x 4” .. 1
Balun Straps ... 2
Fiberglass Insulator, 3/8” x 10” .. 1
Poly Disk Insulator, 7/8” dia. hole 4

IN BAG #7
Capacitor Caps .. 32

IN BAG #8
Shorting Bar, 15m ... 8
Shorting Bar, 15m capacitor tube 8
Shorting Bar, 10m capacitor tube 8
Shorting Bar, 10m ... 8
’T’ Match Shorting bar 2

IN BAG #9
Shorting Bar Insulator, Delrin, Black 1-1/2” Dia. 8

IN HARDWARE BAG #10
Nut, 3/8-16 ss ... 4
Lockwasher, 3/8” split ring ss ... 4
Nut, 5/16-18 ss ... 6
Lockwasher, 5/16” split ring, ss 6
Bolt, 1/4-20 x 3-1/2” ss .. 4
Bolt, 1/4-20 x 3” ss ... 16
Bolt, 1/4-20 x 2” ss .. 20
Bolt, 1/4-20 x 1-1/2” ss .. 4
Nut, 1/4-20 locking, ss .. 28

IN HARDWARE BAG #11
Screw, 8-32 x 1-1/2” ss .. 2
Screw, 8-32 x 1-1/4” ss .. 58
Screw, 8-32 x 1” ss .. 106
Nut, 8-32 locking, ss ... 164